
Recursion and Iteration Support in USE
Validator with AnATLyzer

Jesús Sánchez Cuadrado

Modelling and Software Engineering Research Group (http://www.miso.es)
Universidad Autónoma de Madrid (Spain)

Abstract. Model finders enable numerous verification approaches based
on searching the existence of models satisfying certain properties of inter-
est. One of such approaches is anATLyzer, a static analysis tool for ATL
transformations, which relies on USE Validator to provide fine grained
analysis based on finding witness models that satisfy the OCL path con-
ditions associated to particular errors. However it is limited by the fact
that USE Validator does not include built-in support for analysing re-
cursive operations and the iterate collection operator.

This paper reports our approach to allow USE Validator to analyse OCL
path conditions containing recursive operations and iterate, with the aim
of widening the amount of actual transformations that can be processed
by anATLyzer. We present our approach, based on unfolding recursion
into a finite number of steps, and we discuss how to take into account
practical aspects such as inheritance and details about the implementa-
tion.

Keywords: OCL, ATL, USE Validator, Recursion, Iteration, Model finder,
Constraint Solver

1 Introduction

Model finders are an important element of many automated verification ap-
proaches in the MDE setting, since they are able to find models satisfying certain
properties of interest. Concrete examples of such finders are USE Validator [4]
and EMFtoCSP [3], which take as input a meta-model and a set of OCL in-
variants and return a model satisfying the invariants, if any, within a certain
scope (e.g., the maximum number of instantiations of the meta-model classes
and ranges of attribute values for infinite types such as integers).

As part of our work in the static analysis of ATL transformations [2], im-
plemented in anATLyzer1, we have used the model finder implemented by USE
Validator [4] to enable the precise analysis of certain error types. This analysis
involves creating an OCL path condition which is fed into USE Validator to
obtain a model that satisfies it, in order to confirm the error if the model can

1 http://www.miso.es/tools/anATLyzer.html

be found or to discard the error if not. However, USE Validator does not sup-
port recursive operations nor the iterate collection operation, hence limiting the
applicability of our method in some cases.

This paper reports our approach to enable the analysis of recursive opera-
tions and expressions containing the iterate collection operation in an OCL-based
model finder without support for them, focussing on USE Validator. For recur-
sive operations we unfold the recursion upto a number of levels. In the case of
iterate we similarly convert each call to a sequence of operations that imple-
ments a limited number of iteration steps. We have tested our approach with
USE Validator but it could be easily implemented for other systems.
Paper organization. Section 2 introduces the context of this work using an
example, Section 3 describes the unfolding of direct recursive operations, whereas
Section 4 explains the adaptation of the previous procedure for iterate. Finally,
Section 5 discusses some issues of our approach and concludes.

2 Context and motivation

The context of this work is our static analysis tool for ATL transformations,
called anATLyzer. It consists of a type checking phase in which confirmed fail-
ures and potential errors are identified. Then, for each potential error, we com-
pute its OCL path condition, which is an OCL constraint that must be satisfied
by any source model that would trigger the error at runtime. Afterwards, such
path condition is fed into USE Validator to search for a model, a witness model,
that satisfies the condition. If found, the error is confirmed, otherwise it is dis-
carded. Hence, a key element for this approach to be practical is to maximise the
number of path conditions that can effectively be processed by USE Validator.
More details about the approach are described in [2].

As an example let us consider a modified excerpt of the CPL2SPL transfor-
mation available in the ATL Zoo2, which establishes a translation between two
telephony DSLs. Figure 1 shows an excerpt of the CPL source meta-model, and
an examplary listing3. This piece of transformation maps every SubAction source
element to a LocalFunctionDeclaration in the target, and each Proxy which satisfies
the isSimple predicate into a ReturnStat. In ATL, the relationships between rules
are established via bindings, denoted by ←, which work as follows. The source
elements obtained by evaluating the right part of a binding are looked up in
the transformation trace, in order to obtain the corresponding target element
created by some rule. In the example, the binding in line 20 is evaluated by exe-
cuting the expression s.contents.statement which retrieves a Node source element.
If such source element has been transformed by some rule, the corresponding
target element is assigned to the statement feature.

A smell that the transformation behaviour is not as expected is that a source
element appearing in the right part of a binding has not been transformed by

2 http://www.eclipse.org/atl/atlTransformations/#CPL2SPL
3 We added a filter to the SubAction2Function rule and removed a related rule to make

the example more illustrative.

any rule. In this setting, anATLyzer features a rule analysis component which
is able to analyse rule–binding relationships to determine if a binding is fully
covered by all the resolving rules. To analyse the binding in line 20 anATLyzer

builds the OCL path condition shown at the bottom of Figure 1, which states
the properties that a model for which the binding would be unresolved must
satisfy. This OCL invariant is fed into USE Validator to search for a witness
model that confirms the existence of the problem.

However, in practice anATLyzer could not perform this particular analysis
due to USE Validator not supporting recursive operations, as is the case of
Location.statement. Next section describes how anATLyzer unfolds recursion to
enable this analysis, while Section 4 explains how we deal with iterate.

3 Direct recursion

This is the basic recursive schema, in which an operation calls itself in one
or more call sites within the operation body. Any OCL specification with an
operation featuring even this simple form of recursion is rejected by USE Val-
idator. For the example path condition USE does not try to evaluate the call to
Location.statement because it cannot be determined if the operation terminates.
Hence, the analysis cannot be carried out.

Our approach to deal with this issue is based on unfolding the recursive
operation upto a finite number of steps. We perform the unfolding by copying
the original operation n times, so that there are n+ 1 versions of the operation.
Then, each version of the operation is rewritten so that the recursive call sites
do not invoke the original operation, but the next copy of the operation. The
last operation in the sequence just returns OclUndefined.

Listing 1 shows a sketch of this procedure. It takes the desired number of
unfoldings (N) and the piece of abstract syntax corresponding to the recursive
operation (OP). There are two helper functions, callSites which returns the set
of recursive call sites (i.e., a set of OperationCall abstract syntax elements that
invoke Op) and copy which returns a deep copy of the given abstract syntax
element.

1 N = Number of unfoldings
2 OP = Original operation
3

4 OP0 = OP
5 for i = 1 to N
6 CSi−1 = callSites(OPi−1)
7 foreach cs in CSi−1

8 cs.operationName = OP.operationName + ” ” + i
9 end

10

11 OPi = copy(OP)
12 OPi.operationName = OP.operationName + ” ” + i
13 end
14

15 OPN .body = OclUndefined

Listing 1: Sketch of the unfolding algorithm.

Busy Redirection

SubAction

Node
Container

Proxy Location

Node

redirection
0..1

busy
0..1

contents
1

1 −− We consider nodes are statements, by default.
2 helper context CPL!Node def: statement : CPL!Node =
3 self;
4

5 −− The ”location” node is not a statement.
6 helper context CPL!Location def: statement : CPL!Node =
7 self.contents.statement;
8

9 helper context CPL!Proxy def: isSimple : Boolean =
10 self.busy.oclIsUndefined() and
11 self.redirection.oclIsUndefined();
12

13 rule SubAction2Function {
14 from s : CPL!SubAction (
15 s.contents.oclIsKindOf(CPL!Location))
16 to t : SPL!LocalFunctionDeclaration (
17 name <− s.id,
18 returnType <− rt,
19 −− Is this binding fully covered by resolving rules?
20 statements <− s.contents.statement
21)
22 }
23

24 rule Proxy2Return {
25 from s : CPL!Proxy (s.isSimple)
26 to t : SPL!ReturnStat (
27 ...
28)
29 }

SubAction.allInstances()−>
select(s | s.contents.oclIsKindOf(Location))−>
exists(s |
let problem = s.contents.statement in

not problem .isUndefined() and
not (if problem .oclIsKindOf(Proxy) then

let s2 = problem .oclAsType(Proxy)
in s2.isSimple()

else
false

endif))

Fig. 1: Excerpt of the CPL meta-model (left), two simplified rules of the
CPL2SPL transformation (right), and excerpt of the path condition for the prob-
lem in line 20 (bottom)

In practice, this procedure needs to be extended to deal with inheritance.
This means that it is not enough to duplicate the recursive operation, but every
operation that could polymorphically be invoked needs to be duplicated as well.

Listing 2 shows the final result as it is generated to be processed by USE, and
complements the OCL path condition presented in Figure 1. Hence, using this
method anATLyzer is able to obtain the witness model shown in Figure 2 that
confirms the existence of the problem. As can be seen the model contains the
elements required to trigger the problem: SubAction and Location objects to trigger

the SubAction2Function, and a Proxy element which does not satisfy the isSimple

predicate, and it is thus not handled by any rule. Since the Proxy element is linked
to SubAction via the contents reference, the binding in line 20 will be unresolved.
This model has succesfully been obtained because just two unfolding steps are
enough in this case. We heuristically set the maximum number of unfoldings to
five, but we still do not have any automated mechanism to set parameter to a
safe value for those specific cases in which such reasoning could be possible. For
instance, the upper bound of a recursive operation (possibly polymorphic) with
no parameters would be the maximum number of instances of the class, and the
involved subclasses, set as the the model finder scope.

abstract class Node
operations

statement() : Node = self
statement 1() : Node = self
statement 2() : Node = self
statement 3() : Node = self

end

class Location < Node, NodeContainer
attributes

url : String
clear : String

operations
statement() : Node = self.contents.statement 1()
statement 1() : Node = self.contents.statement 2()
statement 2() : Node = self.contents.statement 3()
statement 3() : Node = OclUndefined

end

Listing 2: Unfolded code as generated for USE Validator

: Location

: Redirection : Proxy

: SubAction

contents

redirection

contents

Fig. 2: Witness model obtained for the path condition.

An alternative to this approach is to inline the operation body n times, using
let expressions to bind parameters. However, we prefer the one presented here
because it is easier to handle polymorphic calls as explained.

4 Iterate

The OCL iterate collection operation is a general iteration operation with the
form col→iterate(it; acc = <init> | <body>). Operationally, it iterates over the
elements of the collection assigning them to the it variable in each iteration step.

Each time, the given body is evaluated and the acc variable is updated with the
result of the evaluation, so that it has a new value in the following iteration or it
is the final result of the operation. As an example, the following code implements
the select collection operation in terms of iterate.

−− Given: col−>select(it | <body>) where col is a Set

col−>iterate(it; acc = Set { } |
if <body> then

acc−>including(it)
else

acc
endif)

In practice, USE Validator is able to evaluate most OCL iteration constructs,
such as select, any, etc. However, it cannot evaluate iterate which poses a limita-
tion for anATLyzer since path conditions containing iterate cannot be processed.

Our approach to deal with this issue is based on unfolding the iteration steps.
Until now we support iteration over sets, applying the following strategy. For
each call to iterate we generate n operations, being n the number of unfoldings,
and each of these operations follows the schema shown in Listing 3. First, we
check if the collection is empty (line 10) in case the iteration must terminate
returning the currently computed value (acc). If the set is not empty, one element
is picked using any (line 13), and then a new set is obtained filtering out the
picked element from the original set (line 14). To the best of our knowledge
this is the only strategy to implement iteration over sets in OCL. Aftewards,
the body of the original iterate is evaluated, and the next iteration operation is
invoked. Finally, the recursion is ended at depth n by just returning OclUndefined

(line 20).

−− Given an expression: col−>iterate(it : Tit; acc : Tacc = <init> | <body)
−− where:
−− Tcol: the type of the elements of the collection
−− Tit: the type of the iteration variable, which must be compatible with Tcol

−− Tacc: the type of the accumulator variable

class ThisModule
operations
def iterate auxi(col : Set(Tcol), acc : Tacc) : Tacc =
if col−>isEmpty() then

acc
else
let it : Tit = col−>any(| true) in
let rest : Set(Tcol) = col−>select(v | v <> it) in
let value : Tcol = <body>
in iterate auxi+1(rest, value)

endif
...

def iterate auxn(col : Set(Tcol), acc : Tacc) : Tacc = OclUndefined

end

Listing 3: Schema for unfolding iterate, using USE syntax

We make use of a special class named ThisModule to allow global operations
to be defined. Notably, the iteration operations are defined within this class. In
this way, every call to iterate is rewritten to an expression similar to thisMod-

ule.iterate aux0(col, <init>), where the thisModule variable is an instance of This-

Module that must be introduced in the scope of the rewritten expression. We also
generate unique identifiers for the iteration operations, to avoid name clashes if
there are several calls iterate in the same path condition. Finally, we also keep
track of the variables in the scope of the original iterate, and if needed, we extend
the signature of the iteration operation to pass such variables as parameters.

5 Conclusions and discussion

In this paper we have presented our approach to enable USE Validator analyse
recursive operations and the iterate collection operation in the context of anAT-

Lyzer. In both cases we perform an unfolding of the body of the operations
upto a finite number of steps. We have run a small number of tests in which
these approaches have shown to be useful, since most of the times a small scope
is enough to find the required witness model [1]. Nevertheless, it is part of our
future work to carry out more experiments to determine the precision of our
approach. In addition, there are some practical considerations to be taken into
account, which are discussed in the following.

Given that there is a limit in the number of unfoldings, the last step of the
unfolding needs to return some value. Ideally, a bottom value should be used to
indicate a kind of “stack overflow”, in the sense that the recursion has ended
prematurely before finishing the computation. In OCL the closest relative to a
bottom value is invalid which conforms to OclInvalid, which in turn conforms
to any other type, but any call applied to its unique instance results in invalid
itself. However, this is not supported by USE, and thus another value must be
used. Selecting such value is difficult in the general case, since it could interact
with other expressions processing the return value. We use OclUndefined both for
recursion and iterate but we are aware that it may affect the accuracy of the
solving process.

In this line, an important consequence of unfolding a limited number of times
is that the analysis of anATLyzer may not be accurate. A potential error can
be wrongly marked as “discarded” only because more unfoldings steps would be
needed to provide an accurate answer.

Another issue that affects the accuracy of the approach is that USE only
supports sets. Therefore, operations such as at, for sequences, cannot be pro-
cessed. Devising mechanisms to deal with sequences is part of our future work.
Hence we aim at studying and adapting other works dealing with these issues,
notably the approach proposed in [5] which relies on SMT solving and a more
sophisticated unfolding algorithm.

Finally, we have not addressed yet how to unfold mutual recursion, although
we believe that a similar strategy is possible, but taking into account the com-
plete call graph of the transformation. This is also part of our future work.
Acknowledgements. This work has been supported by the Spanish MINECO
(TIN2011-24139 and TIN2014-52129-R), the R&D programme of the Madrid Re-
gion (S2013/ICE-3006), and the EU commission (FP7-ICT-2013-10, #611125).

References

1. A. Andoni, D. Daniliuc, and S. Khurshid. Evaluating the “small scope hypothesis”.
Technical Report MIT-LCS-TR-921, MIT CSAIL, 2003.

2. J. S. Cuadrado, E. Guerra, and J. de Lara. Uncovering errors in ATL model trans-
formations using static analysis and constraint solving. In ISSRE, pages 34–44.
IEEE, 2014.

3. C. A. Gonzalez, F. Büttner, R. Clariso, and J. Cabot. Emftocsp: A tool for the
lightweight verification of emf models. In Proceedings of the First International
Workshop on Formal Methods in Software Engineering: Rigorous and Agile Ap-
proaches, pages 44–50. IEEE Press, 2012.

4. M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive validation of OCL models
by integrating SAT solving into USE. In TOOLS (49), volume 6705 of LNCS, pages
290–306. Springer, 2011.

5. P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs.
In Static Analysis, pages 298–315. Springer, 2011.

